翻訳と辞書
Words near each other
・ Programmable calculator
・ Programmable communicating thermostat
・ Programmable controller
・ Programmable Cricket
・ Programmable IC
・ Programmable Interrupt Controller
・ Programmable interval timer
・ Programmable load
・ Programmable logic array
・ Programmable logic controller
・ Programmable logic device
・ Programmable Macro Language
・ Programmable magnet
・ Programmable matter
・ Programmable metallization cell
Programmable read-only memory
・ Programmable scale
・ Programmable sound generator
・ Programmable system device
・ Programmable thermostat
・ Programmable Universal Machine for Assembly
・ Programmable-gain amplifier
・ ProgrammableWeb
・ Programmation Automatique des Formules
・ Programme (booklet)
・ Programme budgeting
・ Programme commun
・ Programme d'eau potable et d'assainissement du Millénaire
・ Programme Delivery Control
・ Programme for Belize


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Programmable read-only memory : ウィキペディア英語版
Programmable read-only memory

A programmable read-only memory (PROM) or field programmable read-only memory (FPROM) or one-time programmable non-volatile memory (OTP NVM) is a form of digital memory where the setting of each bit is locked by a fuse or antifuse. They are a type of ROM (read-only memory) meaning the data in them is permanent and cannot be changed. PROMs are used in digital electronic devices to store permanent data, usually low level programs such as firmware (microcode). The key difference from a standard ROM is that the data is written into a ROM during manufacture, while with a PROM the data is programmed into them after manufacture. Thus, ROMs tend to be used only for large production runs with well-verified data, while PROMs are used to allow companies to test on a subset of the devices in an order before burning data into all of them.
PROMs are manufactured blank and, depending on the technology, can be programmed at wafer, final test, or in system. Blank PROM chips are programmed by plugging them into a device called a ''PROM programmer''. The availability of this technology allows companies to keep a supply of blank PROMs in stock, and program them at the last minute to avoid large volume commitment. These types of memories are frequently used in microcontrollers, video game consoles, mobile phones, radio-frequency identification (RFID) tags, implantable medical devices, high-definition multimedia interfaces (HDMI) and in many other consumer and automotive electronics products.
== History ==
The PROM was invented in 1956 by Wen Tsing Chow, working for the Arma Division of the American Bosch Arma Corporation in Garden City, New York. The invention was conceived at the request of the United States Air Force to come up with a more flexible and secure way of storing the targeting constants in the Atlas E/F ICBM's airborne digital computer. The patent and associated technology was held under secrecy order for several years while the Atlas E/F was the main operational missile of the United States ICBM force. The term "burn," referring to the process of programming a PROM, is also in the original patent, as one of the original implementations was to literally burn the internal whiskers of diodes with a current overload to produce a circuit discontinuity. The first PROM programming machines were also developed by Arma engineers under Mr. Chow's direction and were located in Arma's Garden City lab and Air Force Strategic Air Command (SAC) headquarters.
Commercially available semiconductor antifuse-based OTP memory arrays have been around at least since 1969, with initial antifuse bit cells dependent on blowing a capacitor between crossing conductive lines. Texas Instruments developed a MOS gate oxide breakdown antifuse in 1979.〔See (US Patent 4184207 ) - High density floating gate electrically programmable ROM, and (US Patent 4151021 ) - Method of making a high density floating gate electrically programmable ROM〕 A dual-gate-oxide two-transistor (2T) MOS antifuse was introduced in 1982.〔(Chip Planning Portal ). ChipEstimate.com. Retrieved on 2013-08-10.〕 Early oxide breakdown technologies exhibited a variety of scaling, programming, size and manufacturing problems that prevented volume production of memory devices based on these technologies.
Although antifuse OTP has been available for decades, it wasn’t available in standard CMOS until 2001 when Kilopass Technology Inc. patented 1T, 2T, and 3.5T antifuse bit cell technologies using a standard CMOS process, enabling integration of PROM into logic CMOS chips. The first process node antifuse can be implemented in standard CMOS is 0.18 um. Since the gate oxide breakdown is less than the junction breakdown, special diffusion steps were not required to create the antifuse programming element. In 2005, a split channel antifuse device〔See (US Patent 7402855 ) split channel antifuse device〕 was introduced by Sidense. This split channel bit cell combines the thick (IO) and thin (gate) oxide devices into one transistor (1T) with a common polysilicon gate.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Programmable read-only memory」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.